124 research outputs found

    Collective fusion activity determines neurotropism of an en bloc transmitted enveloped virus

    Get PDF
    麻疹(はしか)ウイルスが「協力」して脳炎を引き起こす仕組みを解明 --新規治療薬の開発やウイルス共通の進化メカニズム解明に期待--. 京都大学プレスリリース. 2023-01-30.Measles virus (MeV), which is usually non-neurotropic, sometimes persists in the brain and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection, serving as a model for persistent viral infections. The persisting MeVs have hyperfusogenic mutant fusion (F) proteins that likely enable cell-cell fusion at synapses and "en bloc transmission" between neurons. We here show that during persistence, F protein fusogenicity is generally enhanced by cumulative mutations, yet mutations paradoxically reducing the fusogenicity may be selected alongside the wild-type (non-neurotropic) MeV genome. A mutant F protein having SSPE-derived substitutions exhibits lower fusogenicity than the hyperfusogenic F protein containing some of those substitutions, but by the wild-type F protein coexpression, the fusogenicity of the former F protein is enhanced, while that of the latter is nearly abolished. These findings advance the understanding of the long-term process of MeV neuropathogenicity and provide critical insight into the genotype-phenotype relationships of en bloc transmitted viruses

    Crystallization strategy for the glycoprotein-receptor complex between measles virus hemagglutinin and its cellular receptor SLAM.

    Get PDF
    Measles virus (MV), one of the most contagious agents, infects immune cells using the signaling lymphocyte activation molecule (SLAM) on the cell surface. A complex of SLAM and the attachment protein, hemagglutinin (MVH), has remained elusive due to the intrinsic handling difficulty including glycosylation. Furthermore, crystals obtained of this complex are either nondiffracting or poorly-diffracting. To solve this problem, we designed a systematic approach using a combination of the following techniques; (1) a transient expression system in HEK293SGnTI(-) cells, (2) lysine methylation, (3) structure-guided mutagenesis directed at better crystal packing, (4) Endo H treatment, (5) single-chain formation for stable complex, and (6) floating-drop vapor diffusion. Using our approach, the receptor-binding head domain of MV-H covalently fused with SLAM was successfully crystallized and diffraction was improved from 4.5 Å to a final resolution of 3.15 Å . These combinational methods would be useful as crystallization strategies for complexes of glycoproteins and their receptors.Measles virus (MV), one of the most contagious agents, infects immune cells using the signaling lymphocyte activation molecule (SLAM) on the cell surface. A complex of SLAM and the attachment protein, hemagglutinin (MVH), has remained elusive due to the intrinsic handling difficulty including glycosylation. Furthermore, crystals obtained of this complex are either nondiffracting or poorly-diffracting. To solve this problem, we designed a systematic approach using a combination of the following techniques; (1) a transient expression system in HEK293SGnTI(-) cells, (2) lysine methylation, (3) structure-guided mutagenesis directed at better crystal packing, (4) Endo H treatment, (5) single-chain formation for stable complex, and (6) floating-drop vapor diffusion. Using our approach, the receptor-binding head domain of MV-H covalently fused with SLAM was successfully crystallized and diffraction was improved from 4.5 Å to a final resolution of 3.15 Å . These combinational methods would be useful as crystallization strategies for complexes of glycoproteins and their receptors

    Dose difference between anisotropic analytical algorithm (AAA) and Acuros XB (AXB) caused by target’s air content for volumetric modulated arc therapy of head and neck cancer

    Get PDF
    Background: We clarified the dose difference between the anisotropic analytical algorithm (AAA) and Acuros XB (AXB) with increasing target’s air content using a virtual phantom and clinical cases. Material and methods: Whole neck volumetric modulated arc therapy (VMAT) plan was transferred into a virtual phantom with a cylindrical air structure at the center. The diameter of the air structure was changed from 0 to 6 cm, and the target’s air content defined as the air/planning target volume (PTV) in percent (air/PTV) was varied. VMAT plans were recalculated by AAA and AXB with the same monitor unit (MU) and multi-leaf collimator (MLC) motions. The dose at each air/PTV (5%–30%) was compared between each algorithm with D98%, D95%, D50% and D2% for the PTV. In addition, MUs were also compared with the same MLC motions between the D95% prescription with AAA (AAA_D95%), AXB_D95%, and the prescription to 100% minus air/PTV (AXB_D100%-air/PTV) in clinical cases of HNC. Results: When air/PTV increased (5–30%), the dose differences between AAA and AXB for D98%, D95%, D50% and D2% were 3.08–15.72%, 2.35–13.92%, 0.63–4.59%, and 0.14–6.44%, respectively. At clinical cases with air/PTV of 5.61% and 28.19%, compared to AAA_D95%, the MUs differences were, respectively, 2.03% and 6.74% for AXB_D95% and 1.80% and 0.50% for AXB_D100%-air/PTV. Conclusion: The dose difference between AAA and AXB increased as the target’s air content increased, and AXB_D95% resulted in a dose escalation over AAA_D95% when the target’s air content was ≥ 5%. The D100%-air/PTV of PTV using AXB was comparable to the D95% of PTV using AAA

    Predominant Infection of CD150+ Lymphocytes and Dendritic Cells during Measles Virus Infection of Macaques

    Get PDF
    Measles virus (MV) is hypothesized to enter the host by infecting epithelial cells of the respiratory tract, followed by viremia mediated by infected monocytes. However, neither of these cell types express signaling lymphocyte activation molecule (CD150), which has been identified as the receptor for wild-type MV. We have infected rhesus and cynomolgus macaques with a recombinant MV strain expressing enhanced green fluorescent protein (EGFP); thus bringing together the optimal animal model for measles and a virus that can be detected with unprecedented sensitivity. Blood samples and broncho-alveolar lavages were collected every 3 d, and necropsies were performed upon euthanasia 9 or 15 d after infection. EGFP production by MV-infected cells was visualized macroscopically, in both living and sacrificed animals, and microscopically by confocal microscopy and FACS analysis. At the peak of viremia, EGFP fluorescence was detected in skin, respiratory and digestive tract, but most intensely in all lymphoid tissues. B- and T-lymphocytes expressing CD150 were the major target cells for MV infection. Highest percentages (up to 30%) of infected lymphocytes were detected in lymphoid tissues, and the virus preferentially targeted cells with a memory phenotype. Unexpectedly, circulating monocytes did not sustain productive MV infection. In peripheral tissues, large numbers of MV-infected CD11c+ MHC class-II+ myeloid dendritic cells were detected in conjunction with infected T-lymphocytes, suggesting transmission of MV between these cell types. Fluorescent imaging of MV infection in non-human primates demonstrated a crucial role for lymphocytes and dendritic cells in the pathogenesis of measles and measles-associated immunosuppression

    Effect of Co Impurities on Superconductivity of FeSe0.4Te0.6 single crystals

    Full text link
    The effect of Co doping on supercoductivity of FeSe0.4_{0.4}Te0.6_{0.6} single crystals is investigated. The superconducting transition temperature decreases linearly for Co doping with the rate -0.75 K/(Co %). On the other hand, the residual resistivity increase is less than 50 /mu/Omega/mu/Omegacm for 4 % Co doping. These data are consistent with the sign changing interband scattering mechanism of superconductivity (s/pms_/pm symmetry).Comment: 10 pages, 6 figure

    FcRγ-dependent immune activation initiates astrogliosis during the asymptomatic phase of Sandhoff disease model mice

    Get PDF
    Sandhoff disease (SD) is caused by the loss of β-hexosaminidase (Hex) enzymatic activity in lysosomes resulting from Hexb mutations. In SD patients, the Hex substrate GM2 ganglioside accumulates abnormally in neuronal cells, resulting in neuronal loss, microglial activation, and astrogliosis. Hexb−/− mice, which manifest a phenotype similar to SD, serve as animal models for examining the pathophysiology of SD. Hexb−/− mice reach ~8 weeks without obvious neurological defects; however, trembling begins at 12 weeks and is accompanied by startle reactions and increased limb tone. These symptoms gradually become severe by 16–18 weeks. Immune reactions caused by autoantibodies have been recently associated with the pathology of SD. The inhibition of immune activation may represent a novel therapeutic target for SD. Herein, SD mice (Hexb−/−) were crossed to mice lacking an activating immune receptor (FcRγ−/−) to elucidate the potential relationship between immune responses activated through SD autoantibodies and astrogliosis. Microglial activation and astrogliosis were observed in cortices of Hexb−/− mice during the asymptomatic phase, and were inhibited in Hexb−/− FcRγ−/− mice. Moreover, early astrogliosis and impaired motor coordination in Hexb−/− mice could be ameliorated by immunosuppressants, such as FTY720. Our findings demonstrate the importance of early treatment and the therapeutic effectiveness of immunosuppression in SD
    corecore